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Abstract

Many researchers have assumed that the selling price is the same as the purchase cost, and developed various EOQ

models for a retailer when the supplier offers a permissible delay in payments. In this paper, we complement the

shortcoming of their models by considering the difference between the selling price and the purchase cost. We then

develop an algorithm for a retailer to determine its optimal price and lot size simultaneously when the supplier offers a

permissible delay in payments. Our theoretical result contradicts to their conclusion that the economic replenishment

interval and order quantity generally increases marginally under the permissible delay in payments.

r 2004 Elsevier B.V. All rights reserved.

Keywords: Pricing; Inventory; Permissible delay; Deteriorating items; Finance
1. Introduction

In the traditional economic order quantity
(EOQ) model, it assumes that the buyer must
pay for the items purchased as soon as the items
are received. Typically, a supplier permits the
buyer a period of time, say 30 days, to settle the
total amount owed to him. Usually, interest is not
charged for the outstanding amount if it is paid
within the permissible delay period. This credit
e front matter r 2004 Elsevier B.V. All rights reserve

e.2004.04.010

ng author. Fax: 1-973-720-2809.

ss: tengj@wpunj.edu (J.-T. Teng).
term in financial management is denoted as ‘‘net
30’’ (e.g., see Brigham, 1995). However, if the
payment is not paid within the permissible delay
period, then interest is charged on the outstanding
amount under the previously agreed terms and
conditions. Therefore, a buyer can earn the
interest on the accumulated revenue received,
and delay the payment up to the last moment of
the permissible period allowed by the supplier. The
permissible delay in payments reduces the buyer’s
cost of holding stock because it reduces the
amount of capital invested in stock for the
duration of the permissible period. Hence, it is a
d.
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marketing strategy for the supplier to attract new
customers who consider it to be a type of cost (or
price) reduction. However, the strategy of granting
credit terms adds not only an additional cost to the
supplier but also an additional dimension of
default risk to the supplier.
Goyal (1985) developed an EOQ model under

conditions of permissible delay in payments. He
ignored the difference between the selling price and
the purchase cost, and concluded that the eco-
nomic replenishment interval and order quantity
generally increases marginally under the permis-
sible delay in payments. Although Dave (1985)
corrected Goyal’s model by assuming the fact that
the selling price is necessarily higher than its
purchase price, his viewpoint did not draw much
attention to the recent researchers. Aggarwal and
Jaggi (1995) then extended Goyal’s model for
deteriorating items. Jamal et al. (1997) further
generalized the model to allow for shortages and
deterioration. Hwang and Shinn (1997) developed
the optimal pricing and lot sizing for the retailer
under the condition of permissible delay in
payments. Liao et al. (2000) developed an inven-
tory model for stock-depend demand rate when a
delay in payment is permissible. Recently, Chang
and Dye (2001) extended the model by Jamal et al.
to allow for not only a varying deterioration rate
of time but also the backlogging rate to be
inversely proportional to the waiting time. All
above models (except Dave, 1985) ignored the
difference between unit price and unit cost, and
obtained the same conclusion as in Goyal (1985).
In contrast, Jamal et al. (2000) and Sharker et al.
(2000) amended Goyal’s model by considering the
difference between unit price and unit cost, and
concluded from computational results that the
retailer should settle his account relatively sooner
as the unit selling price increases relative to the
unit cost. Recently, Teng (2002) provided an
alternative conclusion from Goyal (1985), and
mathematically proved that it makes economic
sense for a well-established buyer to order less
quantity and take the benefits of the permissible
delay more frequently. Chang et al. (2003) then
extended Teng’s model, and established an EOQ
model for deteriorating items in which the supplier
provides a permissible delay to the purchaser if the
order quantity is greater than or equal to a
predetermined quantity.
In this paper, by assuming the selling price is

necessarily higher than the purchase cost, we
establish an appropriate model for a retailer to
determine its optimal price and lot size simulta-
neously when the supplier offers a permissible
delay in payments. As we know, demand is a
function of price. Therefore, the retailer first
decides upon the unit selling price and determines
the expected demand, and then determines the lot
size based on the expected demand. However, to
solve the problem, we must resort to backward
induction. Consequently, we first derive the
optimal lot size for a given price, and then find
the optimal price that maximizes the total profit.
In contrast to the previous results by many other
researchers (e.g., Liao et al., 2000; Jamal et al.,
1997; Aggarwal and Jaggi, 1995; Goyal, 1985), our
theoretical result (i.e., Theorem 2) shows that the
economic replenishment interval and order quan-
tity generally decreases under the permissible delay
in payments. Finally, our computational results
reveal that a higher value of permissible delay
period causes a lower unit selling price but a higher
profit. In short, when a retailer negotiates a longer
permissible delay period from the supplier, the
retailer can pass some of the cost savings to the
customers by lowering the selling price, while
increasing demand and profit.
2. Assumptions and notation

To develop the mathematical model, the follow-
ing assumptions are being made:
(1)
 The demand for the item is a downward
sloping function of the price. There are three
major popular demand functions: constant
elasticity, negative exponential, and linear.
For simplicity, we assume that demand is a
constant elasticity function of the price.
(2)
 Shortages are not allowed.

(3)
 In reality, the retailer has numerous ways to

spend the profit from sales, such as expansion,
R/D, new product development, hardware and
software upgrade, etc. For simplicity, we
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assume here that the retailer spends the profit
in other activities than paying off the loan.
During the time the account is not settled,
generated sales revenue is deposited in an
interest bearing account. At the end of this
period, the retailer pays off all units sold, keeps
the rest for the use of the other activities, and
starts paying for the interest charges on the
items in stocks. In the meantime, the retailer
starts accumulating profit for the use of the
other activities. As a matter of fact, the reader
can easily develop a similar model in which the
retailer pays off the loan whenever he/she has
money, such as in Jamal et al. (2000) and
Sharker et al. (2000).
(4)
 Time horizon is infinite.
In addition, the following notation is used
throughout this paper:

h the unit holding cost per year excluding
interest charges

p the selling price per unit
c the unit purchasing cost, with cop

Ic the interest charged per $ in stocks per
year by the supplier

Id the interest earned per $ per year
s the ordering cost per order
m the period of permissible delay in settling

account; that is, the trade credit period
Q the order quantity
y the constant deterioration rate, where

0pyoo1
I(t) the level of inventory at time t, 0ptpT

T the replenishment time interval
D the annual demand, as a decreasing

function of price; we set D(p)=ap�b,
where a40 and b41

Z(T, p) the total annual profit

The total annual profit consists of: (a) the sales
revenue, (b) cost of placing orders, (c) cost of
purchasing, (d) cost of carrying inventory (exclud-
ing interest charges), (e) cost of interest payable for
items unsold after the permissible delay m (note
that this cost occurs only if T4m), and (f) interest
earned from sales revenue during the permissible
period.
3. Mathematical formulation

The level of inventory I(t) gradually decreases
mainly to meet demands and partly due to
deterioration. Hence, the variation of inventory
with respect to time can be described by the
following differential equations:

dIðtÞ

dt
þ yIðtÞ ¼ �D; 0ptpT ; ð1Þ

with the boundary condition I(T)=0. Conse-
quently, the solution of (1) is given by

IðtÞ ¼
D

y
½eyðT�tÞ � 1�; 0ptpT ; ð2Þ

and the order quantity is

Q ¼ Ið0Þ ¼
D

y
ðeyT � 1Þ: ð3Þ

The total annual profit consists of the following:

ðaÞ Sales revenue ¼ D p; ð4Þ

ðbÞ Cost of placing orders ¼ s=T ; ð5Þ

ðcÞ Cost of purchasing ¼ cQ=T ¼
cD

yT
ðeyT

� 1Þ;

ð6Þ

ðdÞ Cost of carrying inventory ¼ h

Z T

0

IðtÞ dt=T

¼
hD

y2T
ðeyT � 1Þ �

hD

y
: ð7Þ

Regarding interests payable and earned (i.e.,
costs of (e) and (f)), we have the following two
possible cases based on the values of T and m.
These two cases are depicted graphically in Fig. 1.

Case 1: Tpm

In this case, the customer sells DT units in total
by the end of the replenishment cycle time T, and
has cDT to pay the supplier in full by the end of
the credit period m. Consequently, there is no
interest payable. However, the interest earned per
year is

pId

Z T

0

Dtdt þ DTðm � TÞ

� �
=T ¼ pIdDðm � T=2Þ:

ð8Þ
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Fig. 1. Graphical representation of two inventory systems.
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As a result, the total annual profit Z1(T, p) is

Z1ðT ; pÞ ¼ pD �
s

T
�

Dðh þ cyÞ

y2T
ðeyT � 1Þ þ

hD

y
þ pIdDðm � T=2Þ: ð9Þ

Case 2: TXm

As stated in Assumption 3 above, the buyer sells
Dm units in total by the end of the permissible
delay m, and has cDm to pay the supplier. The
items in stock are charged at interest rate Ic by the
supplier starting at time m. Thereafter, the buyer
gradually reduces the amount of financed loan
from the supplier due to constant sales and
revenue received. As a result, the interest payable
per year is

cI c

Z T

m

IðtÞ dt=T ¼
cI cD

y2T
½eyðT�mÞ � 1�

�
cI cD

yT
ðT � mÞ: ð10Þ

Next, during the permissible delay period, the
buyer sells products and deposits the revenue into
an account that earns Id per dollar per year.
Therefore, the interest earned per year is

pId

Z m

0

Dtdt=T ¼
pIdD

2T
m2: ð11Þ
Hence, the total annual profit Z2(T, p) is

Z2ðT ; pÞ ¼ pD �
s

T
�

Dðh þ cyÞ

y2T
ðeyT � 1Þ

þ
hD

y
�

cI cD

y2T
½eyðT�mÞ � 1�

þ
cI cD

yT
ðT � mÞ þ

pIdD

2T
m2: ð12Þ

Note that there are many different ways to
calculate the interest payable as well as interest
earned, such as Goyal (1985), Aggarwal and Jaggi
(1995), and Teng (2002). For simplicity, we use
Goyal’s approach throughout this paper.
Hence, the total annual profit Z(T, p) is written

as

ZðT ; pÞ ¼
Z1ðT ; pÞ for Tpm;

Z2ðT ; pÞ for TXm:

�

Although Z1(m, p)=Z2(m, p), Z(T, p) is a con-
tinuous function of T either in (0, m) or in (m, N),
but not in both.
4. Determination of the optimal replenishment time

for any given price

For low deterioration rates, we can assume

eyT � 1þ yT þ ðyTÞ
2=2: ð13Þ
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Hence, the total annual profit will be given by

Z1ðT ; pÞ � AZ1ðT ; pÞ ¼ Dp½1þ Idðm � T=2Þ�

�
s

T
� Dc �

DT

2
ðh þ cyÞ ð14Þ

and

Z2ðT ; pÞ � AZ2ðT ; pÞ ¼ D½p � cð1� I cmÞ�

�
1

T
s þ

Dm2ðcI c � pIdÞ

2

� �
�

DT

2
ðh þ cyþ cI cÞ:

ð15Þ

That is, the approximation of total annual profit
AZ(T, p) is written as

AZðT ; pÞ ¼
AZ1ðT ; pÞ for Tpm;

AZ2ðT ; pÞ for TXm:

�

Although AZ1(m, p)=AZ2(m, p), AZ(T, p) is a
continuous function of T either in (0, m) or in
(m, N). However, we know from Theorem 1
below that AZ(T, p) is not continuous in (0, N)
because only one case of AZi (T, p) can occur. For
example, h=$0.65/unit/year, Ic=0.09/$/year,
Id=0.06/$/year, c=$5.0 per unit, y=0.05,
p=$10 per unit, m=0.1 year, s=50, a=1000000
and b=2.0, we obtain from Theorem 1 below
that 2spðh þ cyþ pIdÞDm2 ¼ 150; AZ(T, p)=
AZ1(T, p), and the optimal T*=0.081650om, as
shown in Fig. 2. For an example of Case 2 (i.e.,
AZ(T, p)=AZ2(T, p)), we assume that h=$0.65/
unit/year, Ic=0.09/$/year, Id=0.06/$/year, c=$5.0
per unit, y=0.05, p=$10 per unit, m=0.1 year,
s=100, a=1000000 and b=2.0. Then we obtain from
Fig. 2. Graph of AZ(T, p)=AZ1(T, p) with Tpm.
Theorem 1 that 2sX(h+cy+pId)Dm2=150, AZ(T,p)
=AZ2(T,p), and the optimal T*=0.1170634m, as
shown in Fig. 3.
Note that the purpose of this approximation is

to obtain the unique closed-form solution for the
optimal T. By taking the first- and second-order
derivatives of AZi (T, p), for i=1 and 2, with
respect to T, we obtain

qAZ1ðT ; pÞ

qT
¼

1

T2
s �

D

2
ðh þ cyþ pIdÞ; ð16Þ

qAZ2ðT ; pÞ

qT
¼

1

T2
s þ

Dm2ðcI c � pIdÞ

2

� �

�
D

2
ðh þ cyþ cI cÞ; ð17Þ

q2AZ1ðT ; pÞ

qT2
¼ �2

1

T3
so0 ð18Þ

and

q2AZ2ðT ; pÞ

qT2
¼ �2

1

T3
s þ

Dm2ðcI c � pIdÞ

2

� �
: ð19Þ

Consequently, for a fixed p, AZ1(T, p) is a
strictly concave function of T. Thus, there exists a
unique value of T1 which maximizes AZ1(T, p)
as

T1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=Dðh þ cyþ pIdÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=Dg1

p
; ð20Þ

where

g1 ¼ h þ cyþ pId: ð21Þ
Fig. 3. Graph of AZ(T, p)=AZ2(T, p) with TXm.
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To ensure T1pm, we substitute (20) into
inequality T1pm, and obtain that

if and only if 2spðh þ cyþ pIdÞDm2; then T1pm:

ð22Þ

Hence, substituting (20) into (3), the optimal
EOQ for Case 1 (i.e., T1pm) is

QnðT1Þ ¼
D

y
ðeyT1 � 1Þ � DðT1 þ yT2

1=2Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sD=ðh þ cyþ pIdÞ

p
þ ys=ðh þ cyþ pIdÞ:

ð23Þ

Substituting (20) into (14), we obtain

AZ1ðpÞ ¼ AZ1ðT1ðpÞ; pÞ

¼ D½pð1þ IdmÞ � c� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2g1Ds

p
: ð24Þ

From (22), we know that T2Xm implies
2sX(h+cy+pId)Dm2. Consequently, we obtain:
2s+Dm2(cIc�pId)X(h+cy+cIc)Dm240, and

q2AZ2ðT ; pÞ

qT2
¼ �½2s þ Dm2ðcI c � pIdÞ�=T3o0:

ð25Þ

Therefore, for a fixed p, AZ2(T, p) is also a
strictly concave function of T. Likewise, we obtain
the optimal solution to AZ2(T, p) as

T2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2s þ Dm2ðcI c � pIdÞ�=½Dðh þ cyþ cI cÞ�

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s1=Dg2

p
; ð26Þ

where

s1 ¼ s þ
Dm2ðcI c � pIdÞ

2
and g2 ¼ h þ cyþ cI c:

ð27Þ

To ensure T2 is existent and T2Xm, we
substitute (26) into inequality T2Xm, and obtain
that

if and only if 2sXðh þ cyþ pIdÞDm2; then T2Xm:

ð28Þ

Hence, the optimal EOQ for Case 2 (i.e., T2Xm) is

QnðT2Þ � DðT2 þ yT2
2=2Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2sD þ D2m2ðcI c � pIdÞ�=½h þ cyþ cI c�

q

þ y½2sþ Dm2ðcI c � pIdÞ�=f2½h þ cyþ cI c�g:

ð29Þ
Substituting (26) into (15), we obtain

AZ2ðpÞ ¼ AZ2ðT2ðpÞ; pÞ

¼ D½p � cð1� I cmÞ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g2Ds1

p
: ð30Þ

In the classical EOQ model, the supplier must be
paid for the items as soon as the customer receives
them. Therefore, it is a special case of Case 2 with
m=0. As a result, the classical optimal EOQ is

Qn ¼
D

y
ðeyTn � 1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sD=ðh þ cyþ cIcÞ

p
þ ½ys=ðh þ cyþ cIcÞ�: ð31Þ

By comparing (22) and (28), we have the following
theorem.

Theorem 1. For low deterioration rates, we can

obtain the following results.

ð1Þ If 2soðh þ cyþ pIdÞDm2; then Tn ¼ T1:

ð2Þ If 2s4ðh þ cyþ pIdÞDm2; then Tn ¼ T2:

ð3Þ If 2s ¼ ðh þ cyþ pIdÞDm2; then Tn ¼ m:

Proof. It immediately follows from (22) and (28).

Similarly, from (23), (29) and (31), we have the
following theorem.

Theorem 2. For low deterioration rates, we get the

following results:

ðaÞ If cI copId; then Q�ðT1Þ and Q�ðT2ÞoQ�:

ðbÞ If cI c4pId; then Q�ðT1Þ and Q�ðT2Þ4Q�:

ðcÞ If cI c ¼ pId; then Q�ðT1Þ and Q�ðT2Þ ¼ Q�:

Proof. It is obvious from (23), (29) and (31).

Note that Theorems 1 and 2 here are a general-
ization of the corresponding Theorems 1 and 2 of
Teng (2002), in which the deterioration rate is
zero. By assuming that p=c and Ic4Id (i.e., Part
(b) of Theorem 2), many recent researchers (e.g.,
Liao et al., 2000; Jamal et al., 1997; Aggarwal
and Jaggi, 1995) concluded that Q*(T1) and
Q*(T2)4Q*. However, in reality, pId is in general
greater than cIc. Consequently, we know from Part
(a) of Theorem 2 that Q*(T1) and Q*(T2)oQ*.
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5. Determination of the optimal price

Taking the first derivative of (h+cy+pId)
D(p)m2 with respect to p, we obtain

IdDðpÞm2 þ ðh þ cyþ pIdÞD
0ðpÞm2

¼ m2½ðh þ cyÞD0ðpÞ � Idðb� 1ÞDðpÞ�o0: ð32Þ

Hence, (h+cy+pId)D(p)m2 is a strictly decreas-
ing function of p. Using the facts in (22) and (28),
we set P0 such that

2s ¼ ðh þ cyþ p0IdÞDðp0Þm
2: ð33Þ

Consequently, we know from (22) and (28) that

AZðpÞ ¼
AZ1ðpÞ ¼ AZ1ðT1ðpÞ; pÞ for ppp0;

AZ2ðpÞ ¼ AZ2ðT2ðpÞ; pÞ for pXp0:

�

ð34Þ

To obtain the optimal price, taking the first
derivative of (24) with respect to p and setting the
result to be zero, we have

dAZ1ðpÞ

dp
¼ D½ð1þ IdmÞð1� bÞ þ p�1bc

þ ð2g1DsÞ�1=2sðg1p
�1b� IdÞ� ¼ 0:

ð35Þ

Next, we need to check the second-order
condition for concavity. That is

d2AZ1ðpÞ

dp2
¼ Df�p�2bc þ ð2g1Þ

�3=2s1=2


 ½g21p
�2bðb� 2Þ þ I2d �go0: ð36Þ

Likewise, from (30), we obtain the first-order
condition for AZ2(p) as

dAZ2ðpÞ

dp
¼ D½ð1� bÞ þ p�1bcð1� I cmÞ

� g2ð2g2Ds1Þ
�1=2

ð�bp�1s1 þ s01Þ�

¼ Dfð1� bÞ þ p�1bcð1� I cmÞ

� g2ð2g2Ds1Þ
�1=2

ð�bp�1s1

þ
Dm2

2
ðIdðb� 1Þ � p�1bcI cÞ�g ¼ 0:

ð37Þ
The second-order condition for concavity is

d2AZ2ðpÞ

dp2
¼ Df�p�2bcð1� I cmÞ

þ ð2s1Þ
�3=2

ðg2Þ
1=2

ðDÞ
�1=2

½p�2s21b
2
þ s0

2
1

� 2bp�1s1s
0
1 � 2s1ðp

�2s1b� 2p�1bs01

þ
Dm2

2
p�1bcI cÞ�g

¼ Df�p�2bcð1� I cmÞ

þ ð2s1Þ
�3=2

ðg2Þ
1=2

ðDÞ
�1=2

½ðbp�1s1 þ s01Þ
2

� 2p�1s1bðs1 þ
Dm2

2
cI cÞ�go0: ð38Þ

6. An algorithm

Based on the above discussion, we develop the
following solution algorithm to determine an
optimal solution for the approximate model.

Step 1: Determine p0 by solving (33).
Step 2: If there exists a p1 such that p1pp0, and

p1 satisfies both the first-order condition as in (35)
and the second-order condition for concavity as in
(36), then we determine T1(p1) by (20) and
AZ1ðT1ðp1Þ; p1Þ by (24). Otherwise, we set
AZ1ðT1ðp1Þ; p1Þ ¼ 0:

Step 3: If there exists a p2 such that p2Xp0, and
p2 satisfies both the first-order condition as in (37)
and the second-order condition for concavity
as in (38), then we calculate T2(p2) by (26)
and AZ2ðT2ðp2Þ; p2Þ by (30). Otherwise, we set
AZ2ðT2ðp2Þ; p2Þ ¼ 0:

Step 4: If AZ1ðT1ðp1Þ; p1ÞXAZ2ðT2ðp2Þ; p2Þ; then
the optimal total annual profit is AZ�ðT�ðp�Þ; p�Þ ¼

AZ1ðT1ðp1Þ; p1Þ; and stop. Otherwise, AZ�ðT�ðp�Þ;
p�Þ¼ AZ2ðT2ðp2Þ; p2Þ; and stop.
7. Numerical examples

Example 1. For generality, we use the following
example in which c Icop*Id. Given h=$0.5/unit/
year, Ic=0.09/$/year, Id=0.06/$/year, c=$4.5 per
unit, y=0.05, s=$10/per order, a=100000 and
b=1.5. Using the above solution algorithm, we
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Table 1

Optimal solutions for different trade credit period m

m(days) p0 p* T* Q(T*) AZ* Z*

5 0.8076 p2=13.6432 T2=0.094077 187.1249 17943.671 17943.529

10 2.1765 p2=13.6258 T2=0.092887 185.1077 17957.162 17957.039

15 4.0594 p2=13.6079 T2=0.090938 181.5699 17972.387 17972.280

20 6.5569 p2=13.5897 T2=0.088184 176.4136 17989.461 17989.361

25 9.8363 p2=13.5712 T2=0.084555 169.4845 18008.552 18008.467

30 14.1329 p1=13.5535 T1=0.080547 161.1747 18029.911 18030.279

40 27.1234 p1=13.5312 T1=0.080482 162.0156 18074.581 18075.204

50 49.1789 p1=13.5090 T1=0.080418 162.2895 18119.287 18120.214

60 85.5835 p1=13.4869 T1=0.080354 162.5574 18164.029 18164.276

70 143.1669 p1=13.4648 T1=0.080290 162.8307 18208.809 18209.456
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obtain the computational results for various values
of m as shown in Table 1. Table 1 reveals that (1)
the difference between AZ* and Z* is negligible,
(2) a higher value of m causes a higher value of Z*,
but lower values of p* and T*, (3) if T*Xm, then a
higher value of m causes a lower value of Q(T*),
(4) if T*pm, then a higher value of m causes a
higher value of Q(T*), and (5) we know from
Eq. (31) that the classical optimal EOQ
Q*=187.6761, which confirms the result in Part
(a) of Theorem 2 (i.e., Q*(T1) and Q*(T2)oQ*,
if c Icop*Id).
8. Conclusions and future research

In this paper, we develop an appropriate pricing
and lot-sizing model for a retailer when the
supplier provides a permissible delay in payments.
We then establish the necessary and sufficient
conditions for the unique optimal replenishment
interval, and use Taylor’s series approximation to
obtain the explicit closed-form optimal solution.
Next, we derive the first and second-order condi-
tions for finding the optimal price, and then
develop an algorithm to solve the problem.
Furthermore, we establish Theorem 1, which
provides us a simple way to obtain the optimal
replenishment interval by examining the explicit
conditions. We then compare the classical EOQ
with the proposed model here, and obtain
Theorem 2. Finally, our numerical example reveals
that a higher value of the permissible delay m
causes a higher value of the unit profit Z*, but
lower values of the selling price p* and the
replenishment cycle time T*.
The model proposed in this paper can be

extended in several ways. For instance, we may
extend the constant deterioration rate to a two-
parameter Weibull distribution. Also, we could
consider the demand as a function of quality as
well as time varying. Finally, we could generalize
the model to allow for shortages, quantity
discounts, discount and inflation rates, and others.
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